
Better Compression with Deep Pre-Editing

Hossein Talebi, Damien Kelly, Xiyang Luo, Ignacio Garcia Dorado,
Feng Yang, Peyman Milanfar and Michael Elad
Google Research - Mountain View, California

Abstract

Could we compress images via standard codecs while
avoiding artifacts? The answer is obvious – this is doable
as long as the bit budget is generous enough. What if the
allocated bit-rate for compression is insufficient? Then un-
fortunately, artifacts are a fact of life. Many attempts were
made over the years to fight this phenomenon, with vari-
ous degrees of success. In this work we aim to break the
unholy connection between bit-rate and image quality, and
propose a way to circumvent compression artifacts by pre-
editing the incoming image and modifying its content to fit
the given bits. We design this editing operation as a learned
convolutional neural network, and formulate an optimiza-
tion problem for its training. Our loss takes into account
a proximity between the original image and the edited one,
a bit-budget penalty over the proposed image, and a no-
reference image quality measure for forcing the outcome
to be visually pleasing. The proposed approach is demon-
strated on the popular JPEG compression, showing savings
in bits and/or improvements in visual quality, obtained with
intricate editing effects.

1. Introduction
Commonly used still image compression algorithms,

such as JPEG [52], JPEG-2000 [12], HEIF [1] and WebP
[22] produce undesired artifacts when the allocated bit rate
is relatively low. Blockiness, ringing, and other forms of
distortion are often seen in compressed-decompressed im-
ages, even at intermediate bit-rates. As such, the output im-
ages from such a compression procedure are of poor quality,
which may hinder their use in some applications, or more
commonly, simply introduce annoying visual flaws.

Numerous methods have been developed over the years
to confront this problem. In Section 4 we provide a brief
review of the relevant literature, encompassing the various
strategies taken to fight compression artifacts. Most of the
existing solutions consider a post-processing stage that re-
moves such artifacts after decompression [3, 4, 11, 13, 17,
18,30,31,34,42,48,54,57–59]. Indeed, hundreds of papers

(a) Input (b) Baseline JPEG (0.4809 bpp)

(c) Edited input (d) JPEG after editing (0.4726 bpp)

Figure 1: Comparison of our pre-editing method with base-
line JPEG. The uncompressed input (a) is compressed by
JPEG (b), which shows a lot of compression artifacts. We
propose to edit the input image (c) before JPEG compres-
sion (d) to obtain a better perceptual quality and lower bit
rate.

that take this post-processing approach have been published
over the years, including recent deep-learning based solu-
tions (e.g., [10, 16, 20, 53]).

Far less popular are algorithms that propose to pre-
process the image prior to its compression, in order to re-
duce its entropy, thus avoiding the creation of artifacts in the
first place [14,15,33,40,41,50]. Indeed, a denoising applied
before the compression is often found effective for better
encoding performance (e.g. [45]). This line of thinking is

1

ar
X

iv
:2

00
2.

00
11

3v
1 

 [
ee

ss
.I

V
] 

 1
 F

eb
 2

02
0



scarcer in the literature due to the more complex treatment
it induces and the weaker control it provides on the output
artifacts. Still, such a pre-processing approach has a great
advantage over the alternatives, as the changes to the image
are done on the server side, while the decoder side does not
need to be modified nor adjusted.

In this work we propose to pre-process the image by au-
tomatically editing its content, applied before its compres-
sion using a standard coding algorithm. Our goal is to mod-
ify the image content smartly so as to guarantee that (i) most
of the visual information in the image is preserved; (ii) the
subsequent compression operates in a much better regime
and thus leads to reduced artifacts; and (iii) the edited im-
age after compression is still visually appealing. By con-
sidering all these forces holistically, we aim to get creative
editing effects that enable the compression-decompression
stage to perform at its best for the given bit budget.

While one could pose the proposed editing task as an
optimization problem to be solved for each incoming im-
age separately, we take a more challenging route, in which
we target the design of a universal deep neural network that
performs the required editing on any input image. The clear
advantage in this approach is the speed with which infer-
ence is obtained once the network has been trained.

Our learning relies on minimizing a loss-function that in-
cludes three key penalties, aligned with the above descrip-
tion. The first forces the original and the edited images to
be “sufficiently close” to each other, while still allowing
content editing. A second term penalizes the bit content
of the edited image, so as to force the bit-budget constraint
while striving for an artifact-free compression. This part is
achieved by yet another network [5] that predicts the en-
tropy and quality of the image to be compressed. Last, but
definitely not least, is a third penalty that encourages the
edited image after compression to be visually pleasing. In-
deed, our formulation of the problem relies heavily on the
availability of a no-reference quality metric, a topic that has
seen much progress in recent years [8,27,37–39,47,56]. All
the above-mentioned ingredients are posed as differentiable
machines, enabling an end-to-end effective learning of the
editing operation. An example of the proposed technique
is shown in Fig. 1, where the editing operation allows for
better perceptual quality and lower bit budget.

2. Formulating the Problem
We start with a few definitions that will help in formulat-

ing our problem and its solution.

Definition 1 (Codec Operation) We define by CR(x) :
RN → RN the process of compression and decompression
of a given image with R bits. This function gets an image x
and produces an image, CR(x), possibly with the compres-
sion artifacts mentioned above.

Definition 2 (Quality Assessment) We define by Q(x) :
RN → R+ the process of allocating a no-reference quality
to a given image x. The output is a non-negative scalar with
values tending to zero for higher quality images.

Definition 3 (Distance Measure) We define by d(x1,x2)
the distance between two images, x1 and x2, of the same
size. Our distance function should be defined such that it
is “forgiving” to minor content changes such as small geo-
metrical shifts or warps, delicate variations in gray-values,
or removal of fine texture.

Armed with the above, we are now ready to formulate
our problem. Given an image z to be compressed with a bit
budget of R bits, the common practice is to perform com-
pression and decompression directly, ẑ = CR(z), and live
with the limitations.

In this work we suggest a novel alternative: We seek a
new image x that is (i) as close as possible to the given
image z; (ii) it is compressible using R bits; and most im-
portantly (iii) it is of high quality. Naturally, x will be an
edited variation of z in which some of the content has been
changed, so as to enable good quality despite the compres-
sion. Here is our first attempt to formulate this problem:

min
x

dist(x, z) + λQ(x) s.t. x = CR(x). (1)

In words, given z and R we seek an image x that is close
to z, it is of high quality (low value of Q(x)), and it can
be represented via R bits. Referring to the constraint, re-
call that the compression-decompression operation is idem-
potent, i.e. applying it more than once on a given image
results with the same outcome as using it once [29]. Thus,
the constraint aims to say that x is a feasible outcome of the
compression algorithm with the given budget of R bits.

An alternative formulation that may serve the same goal
is one in which we fix the quality as a constraint as well,

min
x

dist(x, z) s.t. x = CR(x) and Q(x) = Q0, (2)

so as to say that whatever happens, we insist on a specific
output quality, willing to sacrifice content accordingly.

Both problems defined in Equations (1) and (2), while
clearly communicating our goal, are hard to handle. This is
mainly due to the non-differentiable nature of the function
CR(x), and the fact that it is hard to fix a rate R while mod-
ifying the image x. While these could be dealt with by a
projection point of view (see [6]), we take a different route
and modify our formulation to alleviate these difficulties.
This brings us to the following additional definitions:

Definition 4 (Quality-Driven Codec Operation) We de-
fine by Cq(x) : RN → RN the process of compression
and decompression of a given image with a quantization



Training Data
(Uncompressed Images)

Editing Network Differentiable 
JPEG Encoder

Differentiable 
JPEG Decoder

Differentiable
Entropy Prediction: distance measure

: quality measure

Edited & compressed
 image

Figure 2: Our learning pipeline for training the image editing T (Θ). Input image zk is first edited by our editing network.
Then, the edited image is fed to the differentiable JPEG encoder/decoder. The entropy of the quantized DCT coefficients are
predicted and used in our training loss. To ensure that the compressed image is close to the uncompressed input, we use a
distance measure. We also use a quality term to enforce the human perceptual preference.

(or quality factor) q. This function gets an image x and
produces an image, Cq(x), possibly with the compression
artifacts mentioned above.

Definition 5 (Entropy Predictor) We define by Bq(x) :
RN → R+ the process of predicting the compression-
decompression performance of a specific algorithm (e.g.,
JPEG) for a given image x and a quantization level q. This
function produces the expected file-size (or entropy).

Note that by setting q, we induce a roughly fixed PSNR
on the image after compression-decompression. Thus, by
minimizing Bq(x) with respect to x, we will be aiming for
reducing the file size while preserving quality. Returning
to our formulation, we add a penalty term, Bq(x), so as
to guarantee that the rate is preserved (or more accurately,
controlled). This leads to

min
x

dist(x, z) + λQ(x) + µBq(x) s.t. x = Cq(x). (3)

The constraint x = Cq(x) assures that x is a valid output of
the compression, and it can be alternatively written as1

min
x

dist(Cq(x), z) + λQ(Cq(x)) + µBq(Cq(x)). (4)

If we have a differentiable proxy for the compression oper-
ation Cq(·), the above loss is manageable.

We could have stopped here, handling this optimization
task and getting an edited and compressed image x for any
incoming image z. This could have been a worthy and even
fascinating feat by itself, but we leave it for future work.

1Admittedly, the notations introduced are a bit cumbersome, as both B
and C use the same quantization level q. The alternative could have been
to divide the compression Cq into an encoder and decoder, and feed the
encoder result to B without specifying q. We chose to stay with the above
formulation for consistency with the opening description.

As we have already mentioned in the introduction, we
aim higher. Our goal is to design a feed-forward CNN that
would perform this editing for any given image automati-
cally. Denoting this editing network by T (Θ, z), where Θ
are the network parameters to be learned/set, our training
loss is given by the following expression:

Loss(Θ) =
∑
k

[dist (Cq(T (Θ, zk)), zk) (5)

+λQ (Cq(T (Θ, zk))) + µBq (Cq(T (Θ, zk)))] .

This expression simply sums the per-image loss over many
training images {zk}, and replaces the edited image xk by
the network’s output T (Θ, zk). Minimizing this loss with
respect to Θ, we obtain the editing network, as desired. Our
learning pipeline is shown in Fig. 2.

3. The Proposed Approach
In this section we dive into our implementation of the

above-discussed editing idea. We start by specifying the
ingredients used within the loss function and then turn to
describe the training procedure employed.

3.1. Specifying the Training Loss

Returning to our definitions, we would like to identify
the specific ingredients used in Equation (5). In this work
we concentrate on the JPEG compression algorithm, due to
its massive popularity and the fact that it is central in digital
imaging and mobile photography. Our formulation relies on
three ingredients:
Distance measure: We seek a definition of dist(x1,x2)
that does not penalize moderate editing changes between
the two images. In our implementation we construct this
distance measure by feature extraction function, F (x) :
RN → RL, and use the perceptual loss ‖F (x1)− F (x2)‖1



as our distance [21, 28, 51]. These features could be the ac-
tivations of an inner layer within the VGG-16 [44] or the
NIMA [47] networks, and they are used to characterize an
image in a domain that is less sensitive to the allowed per-
turbations. The deeper these features are taken from, the
more daring the editing of the image is expected to be. We
experimented with various VGG-16 activations trained for
image quality assessment task [47], and selected the output
of the second convolutional layer before max pooling as our
feature extraction function F (x).

Quality measure: We assess image quality using NIMA
[47]. NIMA is a no-reference image quality assessment
machine that has been used for training image enhance-
ment [46].

Differentiable JPEG: As mentioned above, we need to
incorporate the function Cq(·) within our loss and thus
it should be differentiable. Indeed, as we are working
with JPEG, this function does not control the rate but
rather the quality factor q when running this compression-
decompression. We obtain a differentiable version of this
operator by replacing the quantization step-function curve
by a 3rd-degree smoothed polynomial. Our implementation
in essence is quite similar to [43].

Entropy prediction: In our framework with JPEG, the dis-
crete entropy of the quantized DCT coefficients should be
measured. However, just as described above, the deriva-
tives of the quantization operation are zero almost every-
where, and consequently gradient descent would be inef-
fective. To allow optimization via stochastic gradient de-
scent, we use the entropy estimator proposed in [5], where
an additive i.i.d. uniform noise is added to the quantized
coefficients. This means that the probability mass function
of the DCT coefficients is estimated by a continuous relax-
ation of it, implying that the differential entropy of the DCT
coefficients can be used as an approximation of the discrete
entropy. This provides a slightly biased estimate of the dis-
crete entropy in coarser quantization regimes, but the bias
vanishes for finer quantization levels [5].

To summarize, the following is the loss function we use
in our experiments:

Loss(Θ) =
∑
k

[dist (Cq(T (Θ, zk)), zk)

+λQ (Cq(T (Θ, zk))) + µBq (Cq(T (Θ, zk)))]

where the distance function represents the perceptual error
measures, the image quality is computed by NIMA and a to-
tal variation measure, and the entropy estimate is computed
over the quantized DCT coefficients of the edited image.
Note that the same q-factor is applied both in the function
Bq(·) and the differentiable JPEG function Cq(·).

Conv2d (k7n64s1)
Leaky ReLu

Res block

Res block

Res block

input

k: filter size
n: number of filters
s: stride size
r: number of residual blocks
sum: pointwise addition
BatchNorm: batch normalization layer
Leaky ReLu parameter: 0.2
input: RGB image
output: RGB image

r blocks

BatchNorm

sum

output

Leaky ReLu

Conv2d (k3n64s1)

Conv2d (k3n64s1)
BatchNorm

Conv2d (k3n64s1)
BatchNorm

sum

Conv2d (k3n128s1)
Leaky ReLu

Conv2d (k3n128s1)
Leaky ReLu

Conv2d (k7n3s1)

Figure 3: Our image smoothing CNN.

3.2. The Editing Network

Our editing network consists of two parts; An image
smoothing (Fig. 3), and a patch-based warping operation
(Fig. 4). While the smoothing is similar to a denoiser that
controls fine-grained details, the spatial transformer allows
for subtle local warps that make the underlying image more
compressible [41]. More details on both parts is given be-
low.

3.2.1 The Smoothing Network

Our image smoothing CNN is shown in Fig. 3. This con-
volutional neural network is similar to the residual CNN of
Ledig et al. [35]. This architecture has r = 2 identical resid-
ual blocks, with 3×3 kernels and 64 feature maps followed
by batch normalization [25] layers and Leaky ReLu (instead
of parametric ones) [23] activations. To avoid boundary ar-
tifacts, the input image and feature maps are symmetrically
padded before convolutions.

Examples of using the trained smoothing network are
shown in Fig. 5. These images are not compressed by
JPEG, and only represent edits applied to the input. The dif-
ference image shows that our editing removes fine details.
Note that compressing the smoothed image with JPEG en-
coder at quality factor 20 takes 1.03 bpp, whereas the same



Conv2d
k5n64s2

Leaky ReLu
BatchNorm

Conv2d
k1n6s1

k: filter size
n: number of filters
s: stride size
BatchNorm: batch normalization layer
Leaky ReLu parameter: 0.2 

Bicubic
Interpolation Cropping

(aligned with 8x8 JPEG blocks)

Input Image Output Image

Affine Transformation Matrix

32x32

Avg Pool

Figure 4: Our patch-based spatial transformer network. The affine transformer parameters of 32 × 32 blocks are obtained
from a trainable CNN. Transformed image grid is interpolated to obtain a warped image block of size 32 × 32. Finally, an
8× 8 central block is extracted.

(a) Input (b) Smoothed input (c) Difference between (a) and (b)

Figure 5: The difference between the input and the smoothed images (without JPEG compression). Our smoothing trained-
network removes fine-grain details from the input image to make it more compressible by JPEG. Compressing (a) and (b)
images with JPEG encoder at quality factor 20 takes 1.15 and 1.03 bpp, respectively.

encoder takes 1.15 bpp for compressing the input image.

3.2.2 The Spatial Transformer Network (STN)

As shown by Rott et al. [41], local image deformations can
lead to DCT domain sparsity and consequently better com-
pressibility. Unlike [41] that solves an alternating optimiza-
tion with an optical flow, we use the differentiable spatial
transformer network [26]. STN learns 6 parameters for an
affine local transformation that allows cropping, translation,
rotation, scale, and skew to be applied on the input (Fig. 4).

We apply STN on overlapping blocks of size 32 × 32, and
then we extract central crops of size 8 × 8 that are aligned
with JPEG blocks. Since each 32× 32 block is warped sep-
arately, this can cause inconsistency near the boundary of
cropped blocks. To alleviate this, all overlapped grid values
are averaged across neighboring blocks.

Examples of using the trained STN are shown in Fig. 6.
The STN warps textures and edges locally to make the 8×8
blocks more compressible by JPEG encoder. Compressing
the input and deformed images in Fig. 6(a) and Fig. 6(b)
with JPEG encoder at quality factor 20 requires 0.725 bpp



(a) Input (b) Warped input (c) Difference of (a) and (b)

Figure 6: The difference between the input and the warped images (without JPEG compression). Our warping makes spatial
transformations on local image patches to make them more compressible by JPEG. Compressing (a) and (b) images with
JPEG encoder at quality factor 20 takes 0.725 and 0.708 bpp, respectively.

and 0.708 bpp, respectively.
To take advantage of both editing stages, we cascade the

smoothing and warping operations. While the smoothing
allows for less blockiness artifacts, the STN leads to texture
preservation. Next, we discuss our training data.

3.3. Data

Our editing networks are trained on uncompressed im-
ages. To this end, we use burst processed images of Hasi-
noff et al. [24], which provides 3640 images of size 12
mega pixels. All images are converted to 8-bit PNG for-
mat. We extract about 120K non-overlapping patches of
size 480 × 640, and use them to train our model. We also
create a test set with 10% of the data.

4. Relation to Prior Work
We pause our main story for a while and discuss the rich

literature on combating compression artifacts. Our goal is
to give better context to the suggested methodology by pre-
senting the main existing alternatives. Note, however, that
this does not constitutes an exhaustive scan of the existing
literature, as this is beyond the scope of this work. We sur-
vey these algorithms by dividing them into categories based
on their core strategies:
Post-Processing Algorithms [3, 4, 11, 13, 17, 18, 30, 31, 34,
42, 48, 54, 57–59]: Those are the most common methods
available, operating on the image after the compression-
decompression damage has already been induced. Al-
gorithms of this sort that are designed in the context of
the JPEG format are known as deblocking algorithms.
The idea behind these methods, be it for JPEG or any

other transform-based coder, is quite simple, even though
there are many ways to practice it; Given the compressed-
decompressed image and knowing the quantization levels
and the transform applied, the original image to be re-
covered must lie in a convex set that has a rotated hyper-
rectangle shape. A recovery algorithm should seek for
the most probable image within this set, something that
could be done by relying on various regularization strate-
gies. While some algorithms make use of this very rationale
directly, others relax it in various ways, by simplifying the
constraint set to a sphere, by forcing the recovery algorithm
to take a specific shape, and more. At it simplest form, such
a deblocking could be a simple linear filter applied to the
boundaries between adjacent blocks.
Deep-Learning Based Solutions [10,16,20,53]: Still under
the regime of post-processing, recent solutions rely on deep
neural networks, trained in a supervised fashion to achieve
their cleaning goal. These methods tend to be better per-
forming, as their design targets the recovery error directly,
instead of relying on model-based restoration methods.
Scale-Down and Scale-Up [9, 36, 49, 55]: An entirely dif-
ferent way to avoid compression artifacts is to scale-down
the image before compression, apply the compression-
decompression on the resulting smaller image, and scale-
up the outcome in the client after decompression. This ap-
proach is especially helpful in low bit-rates, since the num-
ber of blocks is reduced, the bit stream overhead reduce
along with it, and the scale-up at the client brings an ex-
tra smoothing. Variations over this core scheme have been
proposed over the years, in which the scale-down or up are
optimized for better end-to-end performance.



Pre-Processing Algorithms [33, 40, 45, 50]: It is well
known that compression-decompression often behaves as
a denoiser, removing small and faint details from the im-
age. Nevertheless, applying a well-designed denoiser prior
to the compression may improve the overall encoding per-
formance by better prioritizing the content to be treated.
The existing publications offering this strategy have typi-
cally relied on this intuition, without an ability to systemat-
ically design the pre-filter for best end-to-end performance,
as the formulation of this problem is quite challenging.

Deformation Aware Compression [41]: While this work
offers a pre-processing of the image along the same lines
as described above, we consider it as a class of its own
because of two reasons: (i) Rather than using a denoiser,
the pre-process applied in this work is a geometrical warp,
which re-positions elements in the image to better match
the coder transform and block-division; and (ii) the design
of the warp is obtained by an end-to-end approximate opti-
mization method. Indeed, this paper has been the source of
inspiration behind our ideas in this work.

Our proposed method joins the list of pre-processing
based artifact removal algorithms, generalizing the work
in [41] in various important ways: (i) Our method could
accommodate more general editing effects; (ii) Its applica-
tion is simple and fast, once the editing network has been
trained; and (iii) We employ a no-reference image quality
assessment that supports better quality outcomes. As al-
ready mentioned, the pre-processing strategy has a unique
advantage over the alternative methods in the fact that the
decoder does not have to be aware of the manipulations
that the image has gone through, applying a plain decod-
ing, while leaving the burden of the computations to the
encoder. That being said, we should add that this approach
can be easily augmented with a post-processing stage, for
fine-tuning and improving the results further.

We conclude this survey of the relevant literature by re-
ferring to two recent and very impressive papers. The work
reported in [7] offers a theoretical extension of the classic
rate-distortion theory by incorporating the perceptual qual-
ity of the decompressed-image, exposing an unavoidable
trade-off between distortion and visual quality. Our work
practices this very rationale by sacrificing image content
(via pre-editing) for obtaining better looking compressed-
decompressed images. The work by Agustsson et. al [2]
offers a GAN-based learned compression algorithm that
practically trades visual quality for distortion. While aim-
ing for the same goal as our work, [2] replaces the whole
compression-decompression process, whereas we insist on
boosting available standard algorithms, such as JPEG, due
to their massive availability and spread use.

Figure 7: Our training loss components during gradient de-
scent with JPEG quality factor in the range [8,25]. For bet-
ter display, all losses are smoothed.

Figure 8: MSE vs. mean bit-rate for the Kodak dataset [19].

5. Experimental Results

In this section our results are discussed and compared to
other methods. Our train and test are performed on a single
Nvidia GPU V100 with 16GB RAM. At training, images
are cropped to 480 × 640, and testing is performed on the
Kodak dataset [19]. We use the Adam optimizer [32] with
learning rate set to 0.0001, and batch size as 1. The edit-
ing notwork is trained for 5× 105 steps of stochastic gradi-
ent descent. Weights from the NIMA are kept fixed during
training.

In order to train the STN and smoothing networks, we
randomly sample the JPEG quality factor from a uniform
distribution in the range [8, 25] at each step of the gradient
descent. This allows our editing to be effective for a range
of bit-rates. At test time, we compare our results with the
baseline JPEG at comparable bit-rates. To compress a test



(a) Input (b) Baseline JPEG (0.3529 bpp) (c) Smoothing + JPEG (0.3508 bpp)

Figure 9: Compression performance with our smoothing network. Smoothing the image before compression leads to less
blockiness and color artifacts.

(a) Input (b) Baseline JPEG (1.0567 bpp) (c) STN + JPEG (1.0485 bpp)

Figure 10: Compression performance of the STN network. The STN applies local warps that lead to better detail preservation
after compression.

image at various bit-rates, we adjust the JPEG quality factor
to ensure that our result compresses with fewer bits.

Our weighted loss for cascaded smoother and STN are
shown in Fig. 7. We select the NIMA weight to be λ = 0.02
and adjust the entropy prediction weight to µ = 1. Our ex-
periments suggest that the weighted predicted entropy and
the distance measure should be close to each other. Also,
as discussed in [46], the quality measure is most effective
when its contribution is limited to a fraction of the total loss.

We trained the smoother and STN networks separately,

and then fine-tuned them jointly. The pre-trained smooth-
ing is obtained by training with an L2 distance measure
dist(x1,x2). Training images are augmented with random
additive white Gaussian noise to enforce smoothing prop-
erty in the resulting network. We randomly vary the stan-
dard deviation of the noise in the range [0, 0.15] at each
training step, and append the noise standard deviation and
JPEG quality factor as extra channels to the input RGB im-
age. Rate-distortion curves of the regular JPEG and the
smoother content are shown in Fig. 8. As expected, the



(a) Input (b) Baseline JPEG (0.4705 bpp) (c) Smoothing + STN + JPEG (0.4355 bpp)

Figure 11: Compression performance for applying smoothing and STN.

smoothing improves upon the baseline JPEG. Note that
these results are obtained before fine-tuning the smoother
with the STN. Examples of the smoother editing are shown
in Fig. 9, where color degradation and blockiness artifacts
are more visible in the baseline JPEG, compared to our re-
sults.

Results for training the STN network are shown in Fig.
10. Our editing of the input images allows to preserve struc-
tures and textures more effectively. The local deformations
of the STN seem to make certain image textures more com-
pressible. Note that this is a different behavior than the
smoother’s effect .

We fine-tune both the smoother and STN networks
jointly and present the results in Figs. 11 and 12. The
cascade editor seems to present comparable details to the
baseline, but with less JPEG artifacts.

We carried a human evaluation study to compare our
proposed framework with baseline JPEG. We used Ama-
zon Mechanical Turk with pairwise comparison for this
task. We asked raters to select the image with better qual-
ity. We processed 24 images from Kodak dataset [19] with
our smoothing and warping (STN) frameworks and com-
pared them with their baseline JPEG counterparts at sim-
ilar bit-rate. Comparisons are made by 20 human raters,
and average percentage of the raters preference over base-
line JPEG is reported in Fig. 13. As can be seen, both STN
and our smoothing show perceptual preference of more than
50% for bit-rates smaller than 0.5 bpp. For higher bit-rates

our methods did not provide a statistically significant ad-
vantage over baseline. Also, we observed that smoothing
consistently outperforms STN.

We conclude by referring to run time: We ran both our
editors on an Intel Xeon CPU @ 3.5 GHz with 32 GB mem-
ory and 12 cores. We only measure timing of the pre-editing
operation, as both methods use the JPEG encoder. The
smoothing CNN and STN run in 1.7 sec and 1.2 sec on a 1
mega pixel image, respectively. Since our editors are based
on convolutional neural networks, these running times can
be further improved by GPU inference.

6. Conclusion

One of the main bottlenecks of low bit-rate JPEG com-
pression is loss of textures and details and presence of vi-
sual artifacts. In this work we have proposed an end-to-end
trainable manipulation framework that edits images before
compression in order to mitigate these problems. Our CNN-
based trained editors optimize for better perceptual quality,
lower JPEG distortions and color degradation. The pro-
posed image-editors are trained offline, avoiding the need
for per-image optimization, or a post-processing on the de-
coder (client) side. Our future work will focus on extending
this idea to other image compression standards, while seek-
ing new ways to allow for more daring editing effects.



(a) Input (b) Baseline JPEG (0.4293 bpp) (c) Smoothing + STN + JPEG (0.4169 bpp)

Figure 12: Compression performance for applying smoothing and STN.

References
[1] Requirements for still image coding using hevc.

http://mpeg.chiariglione.org/standards/
mpeg-h/high-efficiency-video-coding/
requirements-still-image-coding-using-hevc,
2013.

[2] Eirikur Agustsson, Michael Tschannen, Fabian Mentzer,
Radu Timofte, and Luc Van Gool. Generative adversar-
ial networks for extreme learned image compression. In
arXiv:1804.02958v3, 2019.

[3] Francois Alter, Sylvain Durand, and Jacques Froment.
Adapted total variation for artifact free decompression of
JPEG images. Journal of Mathematical Imaging and Vision,
23(2):199–211, 2005.

[4] Amir Z Averbuch, Alon Schclar, and David L Donoho.
Deblocking of block-transform compressed images using
weighted sums of symmetrically aligned pixels. IEEE Trans-
actions on Image Processing, 14(2):200–212, 2005.

[5] J Ballé, V Laparra, and E P Simoncelli. End-to-end opti-
mized image compression. In Int’l. Conf. on Learning Rep-

resentations (ICLR2017), Toulon, France, April 2017.

[6] Sajjad Beygi, Shirin Jalali, Arian Maleki, and Urbashi Mi-
tra. An efficient algorithm for compression-based compessed
sensing. Information and Inference: A Journal of the IMA,
8(2):343–375, 2018.

[7] Yochai Blau and Tomer Michaeli. Rethinking lossy com-
pression: The rate-distortion-perception tradeoff. In Inter-
national Conf. on Machine Learning (ICML), 2019.

[8] Sebastian Bosse, Dominique Maniry, Thomas Wiegand, and
Wojciech Samek. A deep neural network for image qual-
ity assessment. In IEEE International Conference on Image
Processing (ICIP), pages 3773–3777, 2016.

[9] Alfred M Bruckstein, Michael Elad, and Ron Kimmel.
Down-scaling for better transform compression. IEEE
Transactions on Image Processing, 12(9):1132–1144, 2003.

[10] Lukas Cavigelli, Pascal Hager, and Luca Benini. Cas-cnn:
A deep convolutional neural network for image compression
artifact suppression. In International Joint Conference on
Neural Networks (IJCNN), 2017.

http://mpeg.chiariglione.org/standards/mpeg-h/high-efficiency-video-coding/requirements-still-image-coding-using-hevc
http://mpeg.chiariglione.org/standards/mpeg-h/high-efficiency-video-coding/requirements-still-image-coding-using-hevc
http://mpeg.chiariglione.org/standards/mpeg-h/high-efficiency-video-coding/requirements-still-image-coding-using-hevc


Figure 13: Percentage of human raters preference for pair-
wise comparison between our result and baseline JPEG.
Each data point is an average of 480 ratings (24 Kodak im-
ages [19] and 20 human raters).

[11] Tao Chen, Hong Ren Wu, and Bin Qiu. Adaptive postfilter-
ing of transform coefficients for the reduction of blocking ar-
tifacts. IEEE Transactions on Circuits and Systems for Video
Technology, 11(5):594–602, 2001.

[12] Charilaos Christopoulos, Athanassios Skodras, and Touradj
Ebrahimi. The JPEG2000 still image coding system: an
overview. IEEE Transactions on Consumer Electronics,
46(4):1103–1127, 2000.

[13] Yehuda Dar, Alfred M Bruckstein, Michael Elad, and Raja
Giryes. Postprocessing of compressed images via sequen-
tial denoising. IEEE Transactions on Image Processing,
25(7):3044–3058, 2016.

[14] Yehuda Dar, Michael Elad, and Alfred M Bruckstein. Op-
timized pre-compensating compression. IEEE Transactions
on Image Processing, 27(10):4798–4809, 2018.

[15] Yehuda Dar, Michael Elad, and Alfred M Bruckstein.
System-aware compression. In IEEE International Sympo-
sium on Information Theory (ISIT), pages 2226–2230, 2018.

[16] Chao Dong, Deng Yubin, Change Loy Chen, and Xiaoou
Tang. Compression artifacts reduction by a deep convolu-
tional network. In Proceedings of the IEEE International
Conference on Computer Vision, 2015.

[17] Ke Du, Haiyun Han, and Gang Wang. A new algorithm
for removing compression artifacts of wavelet-based image.
In IEEE International Conference on Computer Science and
Automation Engineering, volume 1, pages 336–340, 2011.

[18] Ke Du, Jianming Lu, Hiroo Sekiya, and Takashi Yahagi.
Post-processing for restoring edges and removing artifacts
of low bit rates wavelet-based image. IEEJ Transactions
on Electronics, Information and Systems, 127(6):928–936,
2007.

[19] Rich Franzen. Kodak lossless true color image suite. http:
//r0k.us/graphics/kodak, 1999.

[20] Leonardo Galteri, Lorenzo Seidenari, marco Bertini, and Al-
berto Del Bimbo. Deep generative adversarial compression

artifact removal. In Proceedings of the IEEE International
Conference on Computer Vision, pages 4826–4835, 2017.

[21] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Im-
age style transfer using convolutional neural networks. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2414–2423, 2016.

[22] Maurizio Pintus Ginesu, Giaime and Daniele D. Giusto.
Objective assessment of the webp image coding algorithm.
Signal Processing: Image Communication, 27(8):867–874,
2012.

[23] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep
sparse rectifier neural networks. In Proceedings of the four-
teenth international conference on artificial intelligence and
statistics, pages 315–323, 2011.

[24] Samuel W. Hasinoff, Dillon Sharlet, Ryan Geiss, Andrew
Adams, Jonathan T. Barron, Florian Kainz, Jiawen Chen, and
Marc Levoy. Burst photography for high dynamic range and
low-light imaging on mobile cameras. ACM Transactions on
Graphics (Proc. SIGGRAPH Asia), 35(6), 2016.

[25] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. arXiv preprint arXiv:1502.03167, 2015.

[26] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al.
Spatial transformer networks. In Advances in neural infor-
mation processing systems, pages 2017–2025, 2015.

[27] Bin Jin, Maria V Ortiz Segovia, and Sabine Süsstrunk. Im-
age aesthetic predictors based on weighted cnns. In IEEE
International Conference on Image Processing (ICIP), pages
2291–2295, 2016.

[28] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
European Conference on Computer Vision, pages 694–711,
2016.

[29] Rajan L Joshi, Majid Rabbani, and Margaret A Lepley. Com-
parison of multiple compression cycle performance for JPEG
and JPEG 2000. In Applications of Digital Image Processing
XXIII, volume 4115, pages 492–501, 2000.

[30] Cheolkon Jung, Licheng Jiao, Hongtao Qi, and Tian Sun.
Image deblocking via sparse representation. Signal Process-
ing: Image Communication, 27(6):663–677, 2012.

[31] Tomislav Kartalov, Zoran A Ivanovski, Ljupcho Panovski,
and Lina J Karam. An adaptive pocs algorithm for compres-
sion artifacts removal. In 2007 9th International Symposium
on Signal Processing and its Applications, pages 1–4, 2007.

[32] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[33] Ivan Kopilovic and Tams Szirnyi. Artifact reduction with
diffusion preprocessing for image compression. Optical En-
gineering, 44(2):027003, 2005.

[34] Younghee Kwon, Kwang In Kim, James Tompkin,
Jin Hyung Kim, and Christian Theobalt. Efficient learning
of image super-resolution and compression artifact removal
with semi-local gaussian processes. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 37(9):1792–
1805, 2015.

http://r0k.us/graphics/kodak
http://r0k.us/graphics/kodak


[35] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,
Andrew Cunningham, Alejandro Acosta, Andrew Aitken,
Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-
realistic single image super-resolution using a generative ad-
versarial network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4681–4690,
2017.

[36] Weisi Lin and Li Dong. Adaptive downsampling to improve
image compression at low bit rates. IEEE Transactions on
Image Processing, 15(9):2513–2521, 2006.

[37] Xin Lu, Zhe Lin, Xiaohui Shen, Radomir Mech, and James Z
Wang. Deep multi-patch aggregation network for image
style, aesthetics, and quality estimation. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 990–998, 2015.

[38] Long Mai, Hailin Jin, and Feng Liu. Composition-preserving
deep photo aesthetics assessment. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 497–506, 2016.

[39] Anish Mittal, Anush Krishna Moorthy, and Alan Conrad
Bovik. No-reference image quality assessment in the spa-
tial domain. IEEE Transactions on Image Processing,
21(12):4695–4708, 2012.

[40] Munenori Oizumi. Preprocessing method for dct-based
image-compression. IEEE Transactions on Consumer Elec-
tronics, 52(3):1021–1026, 2006.

[41] Tamar Rott Shaham and Tomer Michaeli. Deformation
aware image compression. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
2453–2462, 2018.

[42] Mei-Yin Shen and C-C. Jay Kuo. Review of postprocessing
techniques for compression artifact removal. Journal of Vi-
sual Communication and Image Representation, 9(1):2–14,
1998.

[43] Richard Shin and Dawn Song. JPEG-resistant adversarial
images. In NIPS 2017 Workshop on Machine Learning and
Computer Security, 2017.

[44] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

[45] Jean-Luc Starck, Fionn Murtagh, Benoit Pirenne, and
Miguel Albrecht. Astronomical image compression based
on noise suppression. Publications of the Astronomical So-
ciety of the Pacific, 108(723), 1996.

[46] Hossein Talebi and Peyman Milanfar. Learned perceptual
image enhancement. In 2018 IEEE International Conference
on Computational Photography (ICCP), pages 1–13. IEEE,
2018.

[47] Hossein Talebi and Peyman Milanfar. NIMA: Neural im-
age assessment. IEEE Transactions on Image Processing,
27(8):399–4011, 2018.

[48] GA Triantaffilidis, D Sampson, D Tzovaras, and MG
Strintzis. Blockiness reduction in JPEG coded images. In
2002 14th International Conference on Digital Signal Pro-
cessing Proceedings. DSP 2002 (Cat. No. 02TH8628), vol-
ume 2, pages 1325–1328, 2002.

[49] Yaakov Tsaig, Michael Elad, Peyman Milanfar, and Gene H
Golub. Variable projection for near-optimal filtering in low

bit-rate block coders. IEEE Transactions on Circuits and
Systems for Video Technology, 15(1):154–160, 2005.

[50] Florence Tushabe and M. H. F. Wilkinson. Image prepro-
cessing for compression: Attribute filtering. In Proceedings
of International Conference on Signal Processing and Imag-
ing Engineering (ICSPIE07), 2007.

[51] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-
stance normalization: The missing ingredient for fast styliza-
tion. arXiv preprint arXiv:1607.08022, 2016.

[52] Gregory K Wallace. The JPEG still picture compression
standard. IEEE Transactions on Consumer Electronics,
38(1):xviii–xxxiv, 1992.

[53] Zhangyang Wang, Ding Liu, Shiyu Chang, Qing Ling,
Yingzhen Yang, and Thomas S. Huang. D3: Deep dual-
domain based fast restoration of JPEG-compressed images.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016.

[54] Pierre Weiss, Laure Blanc-Féraud, Thomas André, and Marc
Antonini. Compression artifacts reduction using variational
methods: Algorithms and experimental study. In IEEE Inter-
national Conference on Acoustics, Speech and Signal Pro-
cessing, pages 1173–1176, 2008.

[55] Xiaolin Wu, Xiangjun Zhang, and Xiaohan Wang. Low
bit-rate image compression via adaptive down-sampling and
constrained least squares upconversion. IEEE Transactions
on Image Processing, 18(3):552–561, 2009.

[56] Wufeng Xue, Lei Zhang, and Xuanqin Mou. Learning with-
out human scores for blind image quality assessment. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 995–1002, 2013.

[57] Avideh Zakhor. Iterative procedures for reduction of block-
ing effects in transform image coding. IEEE Transactions
on Circuits and Systems for Video Technology, 2(1):91–95,
1992.

[58] Guangtao Zhai, Weisi Lin, Jianfei Cai, Xiaokang Yang, and
Wenjun Zhang. Efficient quadtree based block-shift filtering
for deblocking and deringing. Journal of Visual Communi-
cation and Image Representation, 20(8):595–607, 2009.

[59] Xinfeng Zhang, Ruiqin Xiong, Xiaopeng Fan, Siwei Ma, and
Wen Gao. Compression artifact reduction by overlapped-
block transform coefficient estimation with block similarity.
IEEE Transactions on Image Processing, 22(12):4613–4626,
2013.


