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S SUPPLEMENT

S.1 Adaptive Super-Resolution and Denoising

Fig. 1. Denoising: Example effect of local kernel denoising, Left: Low light

image without local kernel denoising, kdenoise = 1.0.Middle: image with

strong local kernel denoising kdenoise = 5.0. Right: local denoising mask.

Black pixels denote areas where we do not apply any spatial denoising and

adjust kernel values for super-resolution, while white pixels denote areas

where we do not observe enough image details to justify super-resolution

and adjust the kernel values for denoising. By analyzing the local struc-

ture, our algorithm can cover a continuous balance between resolution

enhancement and spatio-temporal denoising.

In Section 5.1.2 we describe adapting the spatial support of the

sampling kernel based on the local gradient structure tensor. We

use the magnitude of the structure tensor’s dominant eigenvalue λ1
to drive the spatial support of the kernel and the trade-off between

the super-resolution and denoising, where λ1

λ2
is used to drive the

desired anisotropy of the kernels (Figure 7 in the main paper text).

We use the following heuristics to estimate the kernel shapes (k1
and k2 in Equation (4) in the main paper text):

A = 1 +

√

λ1

λ2
,

D = clamp(1 −
√
λ1

Dtr

+ Dth, 0, 1),

k̂1 = kdetail · (kstr etch · A),

k̂2 =
kdetail

(kshr ink · A) ,

k1 = ((1 − D) · k̂1 + D · kdetail · kdenoise )2,
k2 = ((1 − D) · k̂2 + D · kdetail · kdenoise )2.
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We use the symbol A for the computed gradient anisotropy and

D for the estimated denoising strength. We use the following tuning

parameters: Dth as the denoising threshold, Dtr as how fast we

go from full denoising to no denoising depending on the gradient

strength, kstr etch as the amount of kernel stretching along the

edges, kshr ink as the amount of kernel shrinking perpendicular

to the edges, kdetail as the base kernel standard deviation, and

kdenoise as the kernel standard deviation suitable for denoising. The

denoising strength will make the whole kernel shape bigger and

more radial, effectively also overriding the anisotropic stretching in

regions that are candidates for denoising.

The reasoning behind these heuristics is that small dominant

eigenvalues (comparable to the amount of noise expected in the

given raw image) signify relatively flat, noisy regions while large

eigenvalues appear around features whose resolution we want to

enhance (Figure 1). Figure 1 left andmiddle show the visual impact

of kdenoise parameter, while the contrast of the mask presented on

the right depends on Dth and Dtr .

S.2 Tuning Procedure and Parameters

In this section we describe the tuning parameters that we used

for the results presented for our algorithm. Parameters that affect

the trade-off between the resolution-increase and spatio-temporal

denoising (Section S.1) depend on the signal-to-noise ratio of the

input frames. In such case the parameters are piece-wise linear

functions of SNR in the range [6..30].

Ts = [16, 32, 64]px,
kdetail = [0.25, ..., 0.33]px,
kdenoise = [3.0, ..., 5.0],
Dth = [0.001, ..., 0.010],
Dtr = [0.006, ..., 0.020],
kstr etch = 4,

kshr ink = 2,

t = 0.12,

s1 = 12,

s2 = 2,

Mth = 0.8px .

The Ts , kdetail , andMth are in units of pixels, Dth and Dtr are in

units of gradient magnitude of the image normalized to the range

[0, ..., 1]. The remaining parameters are either unitless multipliers

(kdenoise , kstr etch , kshr ink ) or operate on color differences normal-

ized by the standard deviation (t , s1, s1).

Since our algorithm is designed to produce visually pleasing im-

ages taken with a mobile camera, we tuned those parameters based

on perceputal image quality assessment ensuring visual consistency

for SNR values from 6 to over 30 where the SNR was measured from
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a single frame. Next, we discuss the impact of some of those param-

eters on the final image. The chosen kernel parameters balance the

Fig. 2. Impact of kdetail on the visual results. Left: kdetail of 0.1px

produces very sharp results with significant amounts of noise and some

artifacts. Middle: kdetail of 0.25px produces results balanced between

resolution enhancement and denoising. Right: kdetail of 0.4px produces

over-smoothed results.

resolution enhancement with suppression of noise and artifacts in

the image. Figure 2 shows the visual impact of adjusting the base

kernel size kdetail . Figure 7 presented earlier in the main paper

shows how the kstr etch and kshr ink impact the result, smoothing

the edges and getting rid of alignment artifacts that can result from

the aperture problem. The Ts is increased from 16px to up to 64px

in very low light situations to increase the robustness of alignment

to significant amounts of noise.

Fig. 3. Impact of s2 on the visual results. Top-left: Too small s2 of 1

produces small high-frequency artifacts. Bottom-left: Too large s2 of 4

causes over-rejection in highly aliased regions and loss of super-resolution.

Bottom-right and top-right: s2 of 2 correctly treats areas with local move-

ment as well as heavily aliased regions.

Tuning of the s andMth is performed to balance the false-positive

and the false-negative rate of our robustness logic. A rejection rate

that is too large leads to not merging some heavily aliased areas

(like test chart images), while too small rejection rate leads to the

manifestation of fusion artifacts. The effect of having this parameter

too small or too large can be observed in Figure 3. In practice, to

balance those effects, we use the same fixed values for all processed

images.

Fig. 4. High frequency artifacts caused by the aperture problem: Left:

a high resolution and high frequency test chart image without the rejection

logic described in Section S.3. Notice the numerous blocky artifacts visible

when zoomed-in. Right: the same image with the rejection logic detect-

ing variance loss showing no fusion artifacts, but some aliasing and color

fringing.

S.3 High Frequency Artifacts Removal

Alignment algorithms (such as block matching or gradient based)

fail to correctly align high frequency repetitive patterns (due to

the aperture problem). Our robustness logic makes use of both

low-pass filtering and comparing local statistics. Therefore, the

algorithm as described is prone to producing blocky artifacts in

regions containing only very high frequency signals, often observed

on human-made test charts (Figure 4). To prevent this effect, we

detect those regions by analyzing the local variance loss caused by

local lowpass filtering. In particular, we compare the local variance

before and after the lowpass filtering. When we detect variance loss

and a large local variation in the alignment vector field (the same as

used in the motion prior in Section 5.2.3), we mark those regions as

incorrectly aligned and fully reject them. An example comparison

with and without this logic is presented in Figure 4. This heuristic

has a trade-off: in some cases, even properly aligned high frequency

regions do not get merged.

S.4 Synthetic Data Quality Analysis

We show detailed box plots of our algorithm’s performance com-

pared to different demosaicing techniques in Figure 5.

S.5 Robustness Analysis

APSNR analysis of the robustness on synthetic alignment corruption

tests is shown in Figure 6. The strongest quality degradation (50%

corrupted image tiles or wrong alignment with random offsets of

0.25 pixels) leads to our algorithm merging only a single frame

and PSNR values comparable to simple demosaicing techniques.

Additionally, we show examples of burst merging with and without

the robustness model in real captured bursts in different difficult

conditions in Figure 7.
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Fig. 5. PSNR and SSIM comparisons onKodak andMcMaster dataset.

Performance of our algorithm compared to alternate approaches using

PSNR and SSIM on synthetic bursts created from the Kodak and McMas-

ter datasets. Our solution can use information present across multiple

frames and is significantly better than all other techniques on both syn-

thetic datasets.

S.6 Real Captured Bursts Additional Results

We show some additional comparisons with competing techniques

on bursts captured with a mobile camera in Figure 9.
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Fig. 6. PSNRof image quality caused by alignment corruption of syn-

thetic bursts created from Kodak dataset. Top-Left: PSNR of our algo-

rithm output caused by randomly corrupted and misaligned tiles. Bottom-

Left: Visual demonstration of this type of distortion at the highest evaluated

distortion value. Top-Right: PSNR of our algorithm output caused by noise

added to the alignment vectors. Bottom-Right: Visual demonstration of

this type of distortion at the highest evaluated distortion value. With in-

creasing distortion rate we observe gradual quality degradation, as our

algorithm rejects most of the frames in the synthetic burst and degrades to

a simple gradient-based demosaicing technique.
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Full picture Fusion: Robustness off Fusion: Robustness on Full picture Fusion: Robustness off Fusion: Robustness on

Fig. 7. Robustness examples: Left: Full photo. Middle: Crop of the photo merged without our robustness model. Right: Same region of the photo merged

with our robustness model. In real captured bursts, our algorithm is able to handle challenging scenarios including local scene motion, parallax or scene

changes like water rippling.
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Fig. 8. Additional comparisonwith video super-resolution.Ourmethod compared with FRVSR [Sajjadi et al. 2018] applied to bursts of images demosaiced

with VNG [Chang et al. 1999] or DeepJoint [Gharbi et al. 2016]. Readers are encouraged to zoom aggressively (300% or more).
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Fig. 9. Addional comparison with demosaicing techniques: Our method compared with dcraw’s Variable Number of Gradients [Chang et al. 1999] and

DeepJoint [Gharbi et al. 2016]. Both demosaicing techniques are applied to either one frame from a burst or result of burst merging as described in Hasinoff

et al. [2016]. Readers are encouraged to zoom in aggressively (300% or more).
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