Volume 34 (2015), Number 2 pp. 1-13 COMPUTER GRAPHICS forum

Example-Driven Procedural Urban Roads

G. Nishida, I. Garcia-Dorado, and D. Aliaga

Purdue University, USA

o ——— . /== e
1 sz Ol [0 I \
{ : /’ zl o E: 1)

15 .
4 I"”’ \: ,/_' 1 ,’
,’ II N growing L ¢
/ 2, i i

{ ‘I warping

! \

1 S 3

I 1 - growing

L %

%7 L {

Figure 1: Example-driven result: our interactive approach enables a user to quickly design a road network for an
entire city. In this ezample, a) the user starts with a virtual city using roads from Jiangmen, China (one of the
world’s 10 fastest-growing cities). b) The user selects a target space for a new urban area, and a new road network
is generated by growing and blending two road styles. ¢) Roads in the top right corner are replaced by a selected
example of curved roads. d) Additionally, other interesting road network configurations are inserted. e) Finally, a
8D city model is created. All road network examples were obtained from OpenStreetMap and corresponded to styles
eztracted from Madrid, San Francisco, Canberra, Tel-Aviv, and London.

Abstract

Synthesizing and exploring large-scale realistic urban road networks is beneficial to 3D content cre-
ation, traffic animation, and urban planning. In this paper, we present an interactive tool that allows
untrained users to design roads with complex realistic details and styles. Roads are generated by grow-
ing a geometric graph. During a sketching phase, the user specifies the target area and the examples.
During a growing phase, two types of growth are effectively applied to generate roads in the target area;
example-based growth uses patches extracted from the source example to generate roads that preserve
some interesting structures in the example road networks; procedural-based growth uses the statistical
information of the source example while effectively adapting the roads to the underlying terrain and
the already generated roads. User-specified warping, blending, and interpolation operations are used
at will to produce new road network designs that are inspired by the examples. Finally, our method
computes city blocks, individual parcels, and plausible building and tree geometries. We have used our
approach to create road networks covering up to 200 km? and containing over 3,500 km of roads.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling—I.3.6 [Computer Graphics]: Methodology and Techniques—

© 2015 The Author(s)
Computer Graphics Forum (© 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

G. Nishida, I. Garcia-Dorado, and D. Aliaga / Example-Driven Procedural Urban Roads

1. Introduction

We present an interactive tool to design and create
realistic detailed roads with complex styles. In recent
years, urban modeling has received significant atten-
tion in computer games, movies, and urban planning.
Being able to synthesize and explore large-scale real-
istic urban road networks is beneficial, for example, to
urban procedural modeling (e.g., [Cit]), traffic anima-
tion (e.g., [WSL13, GDAU14]), and urban simulation
(e.g., [Wad02]).

Various modeling approaches have been proposed
to generate realistic roads and/or large-scale road net-
works. Manual modeling of road networks is an option
but quickly becomes impractical for large road net-
works or for frequent modification. Procedural mod-
eling is a popular approach to create large urban
models including roads, but it requires specialized
knowledge to design new parameterized rules and/or
to determine the parameter values needed to create
desired road patterns (e.g., [PMO1]). Inverse proce-
dural modeling uses parameter estimation to avoid
providing explicit parameter values as input (e.g.,
[VGDA*12, TLL*10]), but they usually require users
to define the rules a priori. While for some 2D and
3D content, rules are inferred automatically (e.g.,
[vBM*10,BWS10,TYK"12]), to our knowledge there is
no automatic rule inference method for road networks.
Ezample-based modeling has produced realistic results
in image-based texture synthesis [EL99], 3D model
synthesis [MMO8], and stroke stylization [LYFD12],
for example. However, for highly structured content,
such as a road network, it is challenging to control
a pure example-based method. Altogether, the main
challenge is to develop an efficient and easy-to-control
method to design, adapt, and synthesize realistic roads
of complexity similar to those in the real world with-
out requiring explicitly specified parameterized rules
and parameter values.

Our methodology builds upon two key observations.
First, a road network can be naturally represented as a
geometric graph [Pac04], in which each vertex is asso-
ciated with a unique point in the Euclidean plane and
each edge is associated with a simple curve joining the
points associated with its end vertices. Thus, we look
to a geometric graph growing system as a framework
to synthesize road networks. Second, instead of ex-
plicitly requiring predefined road geometries and con-
figurations, we automatically extract road geometries
from a set of example road networks. Our system uses
roads in OpenStreetMap (OSM) format, which is a
free online editable map of the world and currently
has over 23 million km [OSM]. We let the user choose
one or more example road networks to define the road
style to use. Then, our approach uses the example to

grow a custom road network occupying a target area.
Moreover, our method supports high-level synthesis
and tiling operations, as well as some interactive mod-
eling, to yield road networks different than any of the
input examples. The end result contains both the de-
tails and the realism from the examples yet has the
flexibility and detail amplification of procedural mod-
eling.

Our approach consists of a three main phases:
1) during a sketching phase, the user specifies the
example road networks (i.e., selected regions from
OSM) and may specify the target terrain and some
manually-modeled roads (e.g., highways); 2) during
road-network processing, our system automatically ex-
tracts a set of patches (i.e., meaningful road struc-
tures) for example-based growth and a set of statis-
tical features for procedural-based growth; 3) during
a growing phase, starting from automatically or user-
specified seeds, patches or statistical features are used
to grow the road network into the target area while
maintaining the style of the example. Furthermore,
user-specified procedural growth, warping, blending,
and interpolation operations can be used at will to
produce new road network designs that are inspired
by the selected examples. Since our method automat-
ically finds a large number of patches from the exam-
ple road networks and does not assume predetermined
road geometries, novel detailed and realistic structures
similar to any chosen example road network are easily
synthesized and modified. Finally, our method creates
a plausible city model consisting of blocks, individual
parcels, buildings, vegetation, and street lamps (Fig-
ure 1).

We have used our approach to create road networks
covering up to 200 km?, containing over 3,500 km
of roads, and examples fragments from over 15 cities
worldwide. Novel road networks are interactively cre-
ated in minutes. Using road networks from a newly
selected city, or area, is done on-the-fly and with no
preprocessing.

The main contributions of our work include:

e an interactive system enabling users to design highly
detailed and realistic road networks easily and
quickly,

e an effective combination of example-based and
procedural-based growth to generate roads with fine
details and realism that come from the examples,
and

e a set of high-level synthesis and tiling operations,
including warping, blending, and interpolation, to
produce new styles and to provide seamless connec-
tions between multiple grown areas of potentially
very different road configurations.

© 2015 The Author(s)

Computer Graphics Forum © 2015 The Eurographics Association and

John Wiley & Sons Ltd.

G. Nishida, I. Garcia-Dorado, and D. Aliaga / Example-Driven Procedural Urban Roads

2. Related Work

Our approach builds upon procedural modeling and
example-based synthesis. Procedural modeling can, in
theory, generate any kind of road network as long
as the appropriate rules and parameter values are
given. Vanegas et al. [VAW*10] and Musialski et al.
[MWA*13] provide surveys of urban procedural mod-
eling and reconstruction. Vanegas et al. [VABWO09)
combines behavioral modeling and geometrical mod-
eling to produce plausible urban models, but defin-
ing the behavioral properties requires some expertise.
Smelik et al. [STBB14] discusses several issues that
hinder the use of procedural methods. In general, the
detail amplification inherent in procedural modeling
tends to make the definition of a formal grammar ill-
conditioned, even for experts. Defining rules requires a
trial-and-error methodology to achieve a desired out-
come including road networks.

Inverse procedural modeling may provide users with
a higher-level of parameters to tune. For example, Tal-
ton et al. [TLL*10] discovers the derivation sequence
needed, for a provided grammar, to yield a desired
target shape. If this work were to be applied to road
networks, it would require addressing the formidable
task of designing a predetermined set of rules able
to succinctly support all desired road styles and fea-
tures. Vanegas et al. [VGDA"12] enables the user to
specify high-level urban indicators such as the aver-
age distance of a house from the street, road tortu-
osity, and amount of sun exposure per building. The
users are not aware of the complex relationship be-
tween the input parameter values and the output. But,
all rules have to be predefined by the user. Bokeloh et
al. [BWSK12] uses grids and symmetries to find pat-
tern primitives. These heuristics work very well for
shapes composed of regular patterns, but is more dif-
ficult to apply to stochastic patterns, such as trees and
road networks. Talton et al. [TYK*12] infers a set of
rules for a variety of design patterns but requires a set
of labelled hierarchical designs as input.

Although not an inverse procedural modeling
method, Chen et al. [CEW™08] provides a tensor field
approach yielding an intuitive way to design a road
network without explicitly requiring any rules. Roads
in the target area are generated according to major
and minor streamlines. A user interface helps the user
provide some control over the resulting road struc-
ture, but it still requires some expertise to obtain a
desired output. Moreover, deviating from 90-degree
intersections and creating roundabouts and other de-
tailed road patterns is not possible with a pure tensor-
field approach. Yang et al. [YWVW13] extends this
approach by combining template-based splitting with
streamline-based splitting to generate optimized road

© 2015 The Author(s)

Computer Graphics Forum (© 2015 The Eurographics Association and John

Wiley & Sons Ltd.

Amsterdam Tel Aviv
Density of 2 2
intersections 136/ km 99/km
= Avg. 99 m ~ |y Ave.109m
Distance between s =
intersections i |
W T = S
Tortuosity of Avg. 5.1 Avg. 3.1

street edges

Road segments
directions

Figure 2: Visual and statistical comparisons: two
road networks look visually different but have similar
statistics.

networks and parcel layouts. More complex pattern
of roads and parcels can be produced by pre-designed
templates, but designing such templates is not a triv-
ial task. Our example-driven approach supports the
addition of any road network pattern without any pre-
designed templates or user-performed rule creation.

There are two main variants of example-based
methods: parametric methods that extract parameter-
ized features from the examples and non-parametric
methods that use examples directly.

e Parametric methods are very flexible for well-
understood parameters. Aliaga et al. [AVB0§] de-
scribes a stochastic example-based approach. The
generation parameters include the spatial distribu-
tion of intersection types, average street length,
and average tortuosity. It leads to a flexible sys-
tem but the parameterization loses many interest-
ing and meaningful road configurations existing in
the examples, such as circular plazas, parallel roads,
symmetric structures, and explicitly designed road
configurations. Figure 2 shows visual and statistical
comparisons of two road networks in Amsterdam
and Tel Aviv. These two road networks have differ-
ent styles while their statistics are very similar. This
implies that using only statistics cannot fully cap-
ture the complex details of the road styles. Based
on this observation, we claim that realistic details
of road configurations are difficult to represent only
by simple statistical features and are lost within the
aggregation process.

G. Nishida, I. Garcia-Dorado, and D. Aliaga / Example-Driven Procedural Urban Roads

o IR
Growth

Patch
Extraction § B

& " Road NIV
Feature Growth H ﬂ Post-Process
Examples User Defined Calculation & Rendering

Sketching Phase Example-Based Growing Phase Results

Figure 3: System pipeline: summary of the entire
pipeline of our example-driven road growing system.

e Non-parametric methods are effective for relatively
complex but unstructured content such as tex-
tures (e.g., [WLKT09, YBY*13]), some 3D mod-
els (e.g., [FKS*04, MMO0S8]), and stroke stylization
(e.g., [LYFDI12]). For roads, however, the problem
becomes more difficult. There is no stationarity and
locality, as in texture synthesis. Simple blending
cannot be used to seamlessly connect and merge
adjacent highly varying road styles. Further, road
styles lie not only in the global structure, like the
overall density and curviness, but also in the lo-
cal structure such as circular and triangular shapes.
Aliaga et al. [ABVAOS] decomposes the urban lay-
out into tiles and formulates an urban layout edit-
ing operation as the minimization of gap error and
tile deformation error. Since the roads are repre-
sented by edges of blocks and parcels, the resulting
arrangement of tiles naturally exhibits valid road
networks. However, it only supports affine transfor-
mations of the original urban layout, which makes it
difficult to design a complex shape of road networks.

3. Overview

An overview of our method’s pipeline is shown in Fig-
ure 3. First, a user employs a paintbrush-based tool
to draw land use and terrain height within the tar-
get area (e.g., an empty area for content generation
or a part of an existing city). Our system automati-
cally segments the region into disjoint land use areas
labelled as one of water, flat-land (e.g., coast, in-land),
mountain, or park. The k-th disjoint land-use area is
called the target domain (2x for road generation. If the
user changes the terrain or alters the sketch, then the
system automatically updates the sketch-based seg-
mentation. Further, the user associates at least one
example road network Gy with 2. Gy is decomposed
into G and Gf corresponding to its arterial roads
and local streets, respectively.

Second, our method detects a set of patches and
computes a set of statistical features for each of the
example road networks. Each example road network
(i.e., Gf and GY) is divided into a set of patches P{* =

{pl?lvp?m e ’p?NkA} and Plf = {pflapf% e 7pr,§}a
which allows us to retain interesting road network
structures. For example, pﬁj represents the j-th patch
of the k-th arterial example graph (more details in
Section 4.1). For procedural-based growth, the statis-
tical features including road type (e.g., arterial or local
street), road length and orientation, and road curva-
ture are computed.

Third, our example-driven method grows a target
graph Ty in each target domain §2;. Our method first
grows only arterial roads and then local streets. To
initiate growing, at least one seed ax, for u € [1, Ni]
where Ny denotes the number of seeds is needed in-
side each (2, as an isolated vertex in 7). The user
can define the number of seeds and their locations.
Otherwise, Ny = 1 and the seed is automatically
placed at the centroid of (2. The arterial growing be-
gins by placing all the seeds of T} into a first-in-first-
out (FIFO) vertex processing queue). Vertices are
dequeued and example-based and procedural-based
growth are applied to Tk (Algorithm 1). The user can
optionally specify the usage probability of procedural-
based growth, local and global warping, blending, and
interpolation operations that alter the growth process.
Finally, a 3D model of the city is generated. For no-
tational brevity, we typically drop the k& subindex as
well as the A or S super-index (e.g., pﬁj becomes p;).

Algorithm 1 Road Growth
1: procedure GROWROADS(T,initialSeeds, G)

2: EXTRACTPATCHES(G) (§4.1)
3 Compute statistical features of G (§ 4.2)
4 Q.push(initialSeeds)

5: while not Q.empty() do
6
7
8
9

v+ Qpop()

q < example-based growth, or
procedural-based growth

Add new vertices to Q

(§4.3.1)
(§ 4.3.3)

4. Example-Driven Procedural Roads

In this section, we describe our road generation
method. Our method starts with extracting the ex-
ample’s geometry from the OSM format creating a
geometric graph. OSM provides road network informa-
tion such as geo-location of the road intersections (i.e.,

Road types Type in OSM format
primary, primary_link,
secondary, secondary_link,
tertiary, tertiary_link

residential, living_street

Arterial roads

Local streets

Table 1: Mapping of OSM format to our road types

© 2015 The Author(s)

Computer Graphics Forum © 2015 The Eurographics Association and

John Wiley & Sons Ltd.

G. Nishida, I. Garcia-Dorado, and D. Aliaga / Example-Driven Procedural Urban Roads

1) 2) 3)

SN

Circular shapes are detected. Each shape is expanded.

I

Example road network G

>y P2 B

g

Vertices that are close to
each other are detected.

Extracted patches P = {py,p,}

Figure 4: Subset of the patches extracted from an ex-
ample road network. 1) Given an example road net-
work G, 2) circular shapes are detected by using a
Hough transform. 3) Each detected patch is expanded
by Algorithm 2. 4) For the remaining vertices, we se-
lect each intersection (i.e., a vertex that has at least
three adjoining edges) to create a new patch and ex-
pand it by Algorithm 2. Note that vertices that have
only one or two edges will not form standalone patches
but will become parts of other patches. 5) The remain-
ing edges are added to adjoining patches. In each patch
dead-end edges that are not dead end in the original
example Toad graph are marked as connectors (blue
lines). Also, dead-end edges in the original example
road graph are marked as dead-end (red line).

graph vertices), road segments (i.e., graph edges and
associated polyline), and road segment types. Each
road segment is represented by a polyline. Example
networks are categorized as arterial roads or local
streets by inspecting OSM’s road type data (Table 1).

First, we summarize our patch extraction and statis-
tical feature calculation phases in which the examples’
geometry from the OSM format is used and then pro-
vide details on our multi-seeded road growing phase.

4.1. Example Patches

For each example road network, our method decom-
poses it into patches P = {p1,p2, -+ ,pn} (Figure 4).
To keep a meaningful set of road graph edges in a same
patch, we detect predefined interesting structures and
then expand any remaining intersections into larger
units (Algorithm 2). Each road graph edge belongs to
one patch except connector edges, which are shared
between two adjacent patches. Also, dead-end edges
are marked as dead-end. The user can define interest-
ing structures to be automatically detected using ge-
ometric relations (e.g., angle, symmetry, or shape). In
our current implementation, our system automatically
detects circular shapes (e.g., plazas and roundabouts)
using a Hough transform and finds tightly clustered

© 2015 The Author(s)

vertices (e.g., vertices describing on/off ramps for large
arterial roads and major road network interchanges)
using a nearest neighbor search.

Algorithm 2 Detect Patches
: procedure EXTRACTPATCHES(G)
{patches} <— DETECT(G) (e.g. circular shape)
for each patch € {patches} do
EXPAND(patch, Q)

1
2
3
4
5: for each verter € G\{patches} do
6
7
8
9

patch < Make vertex as a patch
EXPAND(patch, Q)
: procedure EXPAND(patch, Q)
Put all the vertices of patch into @
10: while not Q.empty() do

11: v+ Q.pop()

12: for each u € adj(v) do

13: e « edge(u,v)

14: if e.length() < threshold then
15: Add w and e to patch

16: Q.push(u)

4.2. Statistical Features

The system computes the average and the variance of
the length (I and V(1)) and the curvature (% and V (k))
of the edges of each graph. For the curvature, we use
the following approximation [ABS02] to compute the
average curvature of an edge’s polyline:

Zm+4+1 _ _zZm

. 2o ‘ TZmiall Temll ‘ 1)

> ll2mll ’
where z, is m-th line segment of the polyline. The sta-
tistical features are used for procedural-based growth.

4.3. Arterial Road Generation

After the patch extraction and feature calculation,
growing commences from each seed placed in the tar-
get domain. Our approach uses a breadth-first graph
growing method for each domain (2. At each step,
graph vertex v; is dequeued from @), and either one
of two types of growth is performed: example-based
(Section 4.3.1) or procedural-based (Section 4.3.3).
Our system, by default, uses example-based growth.
Procedural-based growth is used if 1) all the detected
patches fail to pass the patch legality checks (Sec-
tion 4.3.2), i.e., it is not possible to find a proper patch
or 2) the user chooses to use the interpolation oper-
ation (Section 5.3). For procedural-based growth, lo-
cal constraints are also taken into account in order to
adapt to the underlying terrain and the already gen-
erated roads (Section 4.3.4). After example-based or
procedural-based growth is applied, the new exterior

Computer Graphics Forum (© 2015 The Eurographics Association and John

Wiley & Sons Ltd.

G. Nishida, I. Garcia-Dorado, and D. Aliaga / Example-Driven Procedural Urban Roads

User specified source point

P1 D2 P3

$ s s

\

; ’

\\ ’ ‘\I\'

(c) Road Graph

(d) Patch processing (e) Patches found

(a) Source Network (b) Arterial Roads

® (k)

Vo

User specified
destination point

Patch p; Patch p, Patch p; Procedural-based growth

()

Patch p;

No valid patch Procedural-based growth

Figure 5: This figure depicts the road growing process. a)-¢) The patches are extracted from the source example.
f) For the user-specified destination point (seed), patch p1 that is closest to the user-specified source point in the
example is used to grow the target graph. g) The new exterior vertices v1, vz, v3, and v4 are enqueued to @ and the
next vertex v1 is dequeued from Q. h) Patch ps is selected according to the usage probabilities. 1) This probabilistic
random selection may choose patch ps even though patch ps has higher similarity and higher usage probability.
Once a patch is selected, it is copied and translated to the position of vi. If a new vertex of the patch is close to an
existing vertex, they are merged into one vertez (yellow dot). j) If no example patch has a non-zero usage probability
because of the surrounding environment such as the river in this case, k) procedural-based growth will be performed.
1) For a vertex that is generated procedurally, m) an example patch is selected according to the usage probabilities
in a similar manner. n) Another case of using procedural-based growth is o) when no example patch has a non-zero
usage probability because it overlaps with the already generated roads. p) In this case, procedural-based growth is
used so that the generated roads will be connected to the existing roads.

vertices are enqueued into (). Once road generation
completes (i.e., @ is empty, or all road segments inter-
sect the boundary of the target domain) the user can
optionally apply some automatic post-process (Sec-
tion 4.5) to filter small undesired road segments (e.g.,
short dangling edges not from an example patch).

Figure 5 visually presents steps from the OSM file
loading to road generation. Starting from one or more
user-specified destination points, which are used as
seeds, example-based or procedural-based growth is
performed at each step. Notice that example-based

growth preserves some interesting structures but may
not be used because of the underlying terrain and
the already generated roads while procedural-based
growth can complement this issue.

4.3.1. Example-Based Growth

For example-based growth, a patch p; € P is randomly
selected according to the usage probability Pr(p;),
which is defined by

— mi dist L 1,€qs
e~ Nk, dis H(ep; 1€, k) « [(pj)

Pr(p;) = B ¢

© 2015 The Author(s)

Computer Graphics Forum © 2015 The Eurographics Association and

John Wiley & Sons Ltd.

G. Nishida, I. Garcia-Dorado, and D. Aliaga / Example-Driven Procedural Urban Roads

where distm(e1,e2) denotes Hausdorff distance be-
tween edges e and ez, €p;,l denotes the [-th connector
edge of patch pj;, e, » denotes the k-th edge connected
to the current vertex v;, I(p;) is an indicator function
that is 1 if the patch passes the legality checks (Sec-
tion 4.3.2) and 0 otherwise, and Z is a partition func-
tion to normalize the probability. In this manner, the
selected patch pj is likely to well fit to v;.

Once a patch p; is selected, the patch is copied and
translated to the position of v;. Then, the edges of
p; that are redundant to the existing edges of T are
removed and p; is glued to T'. Note that p; may have
a vertex whose coordinates are very close to one of
the existing vertices (e.g., yellow dot in Figure 5i).
In this case, those two vertices will be merged into
one vertex, so the resulting graph is well connected.
If there is no valid patch, i.e., no patch has a non-
zero usage probability, procedural-based growth will
be used (Section 4.3.3).

4.3.2. Patch Legality Checks

To compute the usage probability for each patch, the
following legality checks are performed:

e check whether all the edge segments of the patch
are above water level,

e check whether the underlying terrain slope of the
patch is within a threshold, and

e check whether the patch does not intersect with any
road segments of T'.

If the patch fails to pass the legality checks, its usage
probability becomes 0 according to Equation (2).

4.3.3. Procedural-Based Growth

When all the patches fail to pass the legality checks
or the user chooses to use the interpolation operation,
procedural-based growth is applied. Unlike example-
based growth, this type of growth uses the statistical
feature information of the source example, I, V (1), &,
and V' (k), which are used to define the length and the
curvature of the new road segments. Given the current
vertex v; and already generated edges connected to
v;, additional (polyline) edges are synthesized so that
the angle between each adjacent edges is close to 90
degrees.

4.3.4. Local Constraints

For each potential road segment created by
procedural-based growth, some local constraints
are taken into account in order to adapt to the
underlying terrain as well as the already generated
roads (e.g., similar to the localConstraints in [PMO1]).
In particular, our method executes the following:

© 2015 The Author(s)

Computer Graphics Forum (© 2015 The Eurographics Association and John

Wiley & Sons Ltd.

(a) —o (b) L — r—o

'
i
'
: : '
'
’
'
'
i

. e

Figure 6: The road segments generated by procedural-
based growth might be a) connected to the already gen-
erated roads if they are close, b) discarded because of
the acute angle, or adjusted to the underlying terrain
such as c) the river and d) the mountains.

e If there is an existing vertex or edge that is very
close to v; in the direction within a certain range
from the road segment, extend the road segment to
the closest one to connect (Figure 6a). However, if
there is already an existing edge such that the angle
between the existing edge and the new edge is too
acute, the new edge will be discarded (Figure 6b).

e If the road type is local street and a part of the road
segment is below water level, the road segment will
be discarded.

e If the road type is an arterial road and a part of the
road segment is below water level, extend the road
segment until it reaches the other side of the river.
A change in the orientation of the road segment
is allowed up to a certain range so that the road
segment can cross the river with a shorter distance
(Figure 6¢). If it does not reach the land (i.e., it is
going to the ocean), the road segment is discarded.

e If the underlying terrain slope is steep, the road
segment will be bended to be perpendicular to the
local terrain gradient. However, if the slope is too
steep, the road segment will be removed (Figure 6d).

4.4. Local Streets Generation

Once arterial roads are grown, local streets are seeded
and grown. The method by which local-street seeds are
generated depends on whether the edge was grown by
example-based or procedural-based growth. For edges
created by example, all the intersections with the local
streets along the edge in the example will be used as
the initial seeds for local streets generation (Figure 7).
These initial seeds also contain the corresponding ex-
ample patch of the local streets; thus, example-based
growth is used. After that, the local streets are gener-
ated in the same manner as the arterial roads gener-

G. Nishida, I. Garcia-Dorado, and D. Aliaga / Example-Driven Procedural Urban Roads

Figure 7: Local street generation: a) for the edges
generated by an erxample-patch-based rule, b) all the
intersections along the edge with local streets in the
source example are used to populate the initial seeds
for local street generation (black dots). c) Then, the lo-
cal streets start growing from these initial seeds (white
lines).

ation. In this way, the generated local streets have a
similar pattern to the example.

For the edges created by procedural-based growth,
we use the statistical features to divide those edges
into multiple small fragments and put initial seeds at
the boundary between fragments. Then, starting from
the initial seeds, local streets generation is processed
in the same way as the previously discussed arterial
road generation.

4.5. Post-process

After the road generation completes, the user can op-
tionally apply some automatic post-process to remove
dangling edges. Starting from a vertex that has only
one adjoining edge, the connected edge is removed.
However, if the vertex is generated by an example
patch and it is marked as dead-end, it is kept without
being removed. We iterate this process until there is
no such vertex (Figure 8).

5. Synthesis and Tiling Operations

In this section, we describe our high-level synthesis
and tiling operations. In addition to using the example
roads, these operations allow users to control growth
by tuning style in an intuitive manner.

5.1. Warping

Our approach uses piecewise linear transformations to
support warping an example road network to its target
domain (Figure 9a). Image-based warping is a well-
studied approach that defines a point-to-point map-
ping from a source to a target and distorts the image
according to the mapping. The distortion may be ac-
ceptable or even make creative results for images. But
for road networks, the distortion is undesired in most
cases. Our warping operation ensures that example

/ deacllend

¢

<L,

Subset of extracted patches Source example

A ! A

" Generated roads 7 After post-process

Figure 8: The post-process filtering removes the
dangling edges (red dotted circle) while those that is
marked dead-end in the source example (blue dot in
the patch) is kept without being removed (blue dotted
circle).

patches grown from the same initial seed use a similar
transformation. Hence, the relative position of adja-
cent intersections is preserved and consequently the
local structure does not change much.

To perform a warp, a user provides a guideline with
corresponding control points in the example and in
the target domain. The control points in the target
domain are also used as multiple initial seeds a,, for
road generation (i.e., Ns > 1). Given guideline seg-
ments IF(u = 1,2,---,Ns_1) in the example and
ly(u = 1,2,--- | Ns_1) in the target domain, the ro-
tation angle for seed a,, is

plu) + pllut1) — p() + p(liss)
2 2 ’

P(au) = 3)

where p(l,,) represents the orientation of the line seg-
ment [,.

Then, starting from the initial seeds, the road gen-
eration algorithm described in Section 4.3 is applied.
When a patch p; is selected for the current vertex v,
the world-space rotation angle defined for the original
seed is applied so as to rotate the patch. In this way, all
the road graph fragments grown from the same initial
seed are in the same orientation. Thus, the relative
locations of the adjacent intersections are preserved
except when two neighboring intersections are grown
from different seeds. In this case, it is possible that two
edges outgoing from two adjacent intersections cross
each other, but our legality checks can handle such a
situation as described in Section 4.3.

© 2015 The Author(s)

Computer Graphics Forum (© 2015 The Eurographics Association and

John Wiley & Sons Ltd.

G. Nishida, I. Garcia-Dorado, and D. Aliaga / Example-Driven Procedural Urban Roads

O U
aunlSguuum
E]DDDD%%QDDD%

Example

Figure 9: Synthesis operations: a) warping: a piece-
wise linear transformation is computed based on user-
specified guidelines. b) Blending: given a vertex v;, the
probability Pr(bs) of using example bs (s = 1,2 in this
example) is a random variable with a Gaussian dis-
tribution. Its standard deviation is controlled by the
user. ¢) Interpolation: a mizture of two different styles
is synthesized by computing a weighted average of fea-
ture information (i.e., the length and the curvature of
the edges in the shown two examples).

5.2. Blending

We also provide a blending operation by which the
roads grown using more than one example can grad-
ually change from the style of one example to the
style of another (Figure 9b). This ability mitigates
sudden changes on the boundary between different
styles which might cause unexpected road interrup-
tions and/or oddly-shaped connecting roads. Since the
sudden change can be desired in some areas, a user-
specified parameter determines the width of the blend-
ing area.

Given a vertex v; and a set of blending example
networks B = {b1,- - ,bny }, where typically Ng = 2,
the probability Pr(bs) of using example bs to construct
patches is defined as

Pr(bs)

1 |2(v:) — @ (a(bs))|?
~ X, Pr(b) ex"(202 D?) ’
(4)

where @(v;) are the coordinates of the vertex v;, a(bs)
is the initial seed for example by, op, is the parame-
ter to control the probability distribution, and D is
to normalize the distance between v; and a(bs). This

© 2015 The Author(s)

probabilistic selection generates a smooth transition
from the style of one example to that of another.

5.3. Interpolation

Interpolating example road networks enables the cre-
ation of novel networks appearing to be inspired by the
examples but are different. There is no general way to
interpolate two graphs. Even if the two graphs have
the same structure, finding corresponding edges is a
NP problem and is known as the graph isomorphism
problem [KST93]. To avoid this expensive computa-
tion, we use procedural-based growth for interpola-
tion. The length and curvature feature information of
the edges to interpolate are used to grow the target
graph. Let A and B be the two different example styles
and let Ix, V(lx), x, and V(kx) be the average and
the variance of the length and the curvature of the
edges in style X (i.e., X = A or X = B). Then, the
interpolated length [* and curvature x* are computed
as the weighted average of two styles:

{ =t + 151 —1)

<
K =rht+rp(1—1) for 0=t<1, (5)

where 1% ~ N(lx,V(ix)) and % ~ N(Fx,V(kx))
are a random variable with a Gaussian distribution,
and the weight ¢ is controlled by the user. This inter-
polation yields the target graph having a mixture of
two different styles. For example, a regular grid and a
very curvy grid can make a mildly curved grid (Figure
9c¢).

6. Results

We have used our method to produce road networks
using examples from all over the world. Our system
is implemented in C++4, using OpenGL, and reads
OSM files as examples. All growing is performed on
an Intel Core i7 CPU and takes 2 minutes on average
for generating around 300 km of roads (Table 2).

Figure | Total length | Generation time
1 278 km 49 seconds
10a 35 km 1 seconds
10b 150 km 7 seconds
1le 195 km 28 seconds
11f 228 km 40 seconds
11g 314 km 128 seconds
12¢ 210 km 83 seconds
13c 330 km 90 seconds
13f 337 km 131 seconds
14e 342 km 130 seconds

Table 2: Computation time for road generation in this
paper.

Computer Graphics Forum (© 2015 The Eurographics Association and John

Wiley & Sons Ltd.

G. Nishida, I. Garcia-Dorado, and D. Aliaga / Example-Driven Procedural Urban Roads

(a)

Example

< >

(b)

Figure 10: Single-ezample road generation: roads
were generated by using an example road network from
Paris. Roads were grown a) from one initial seed and
b) from three initial seeds in the target area.

As results, we first show a closer view of a single-
example road generation process. The generated roads
maintain a look and feel similar to the example. We
used our program to design a new road network us-
ing the roads from an example fragment in Paris. The
user specified the example area, the target area, and
one initial seed for the smaller result and three initial
seeds for the larger result in this example. Our system
generated the target road network automatically. No-
tice how the circular plaza structure appears multiple
times and in a manner similar to the example.

Figures 11 and 12 show some examples of our syn-
thesis operations. Figure 11 demonstrates blending
with different blending values. The roads on the left
side exhibit a curved pattern from Canberra. The
roads on the right side exhibit a dense grid pattern
from Tokyo. The roads in the middle area of Figures
1le-g show a blended pattern obtained by spatially
varying the blending value according to the distance
from the initial seeds. This blending demonstrates a
smooth user-controlled transition between two differ-
ent patterns.

Figure 12 shows our warping operation. A road net-
work fragment from Paris is used as an example. The
warping operation is applied according to the user-
specified guideline describing an ”S” shape. In con-
trast, using existing image-based warping, such as the
Puppet Tool from Adobe Photoshop, distorts those
same meaningful structures, and thus results in unde-

sired road networks. Notice that interesting patterns
in the example are preserved by our warping oper-
ation, while some unnatural shapes of blocks might
be generated because of the sharp curve of the user
guideline. Determining the validity of an urban lay-
out is a complex issue, and it depends on the applica-
tion [LSWW11], so we provide warping as an optional
operation to enhance user expressiveness.

Figures 13 and 14 show the result of two design
sessions. In Figure 13, a user starts with an empty
target area. The user first draws a sketch of a city
and provides various example road network fragments
tagged to be from various different terrain elevations
— in total 6 examples: Amsterdam, Barcelona, Can-
berra, New York, Canberra, and Quito. Then, a plau-
sible terrain is produced from the sketch and roads are
automatically generated. As part of the content cre-
ation process, the user decides to modify the terrain
by adding some mountains. OQur system re-segments
the terrain and searches, indexed by terrain height, for
the most suitable example fragments to use. In Figure
14, a user performs interactive exploratory planning
for an urban redevelopment project using our system.
The user starts with an urban area and replaces some
parts by different road styles using warping, blend-
ing, and interpolation operations. Then, the user adds
a park with some hand-drawn roads. A large area of
roads can be quickly designed in a similar manner. In
the final result (Figure 14g), the generated road net-
work covers 200 km? and contains over 3,500 km of
roads. Finally, an entire city model is created (Figure
14h).

Discussion. Our approach uses the example
patches to preserve the styles from examples, while the
procedural-based growth is used to fill the gap between
patches. Even though the procedural-based growth
uses some statistical features from the source exam-
ples, most of the interesting details are lost. Thus, the
rate of example-based growth indicates how much the
styles are preserved in the generated road networks
(Table 3). The rate becomes low when the underly-
ing terrain is not flat or the road growth starts from
multiple seeds.

Figure | Rate of example-based growth
10a 91 %
10b 66 %
1le 54 %
11f 63 %
11g 58 %
13c 49 %
13f 44 %

Table 3: Rate of example-based growth.

© 2015 The Author(s)

Computer Graphics Forum © 2015 The Eurographics Association and

John Wiley & Sons Ltd.

G. Nishida, I. Garcia-Dorado, and D. Aliaga / Example-Driven Procedural Urban Roads

(a) Canberra” - (b) Tokyo

| 0 EiE=

(c) Some of the local street patches (d) Some of the local street patches
from Canberra from Tokyo

(h) No blending

Figure 11: Blending: a) the curved roads from Can-
berra are joined together with b) the grid pattern from
Tokyo. The patches of ¢) Canberra and d) Tokyo are
extracted from the erxample roads. The blending op-
eration makes the roads in the middle area exhibit
a smooth transition between two different styles. The
user can control the transition by changing the blend-
ing values as shown in e), f), and g). The patches from
Canberra and Tokyo are colored red and blue, respec-
tively, while the roads generated by procedural-based
growth are colored purple. h) Adjoining two styles of
roads without blending causes a sudden change in the
road network along the border that cannot easily be
solved with image-based blending.

© 2015 The Author(s)

(a)

Figure 12: Warping: a) given an example road net-
work from Paris, b) image-based warping distorts, or
collapses, meaningful road shapes. c¢) In contrast, our
warping operation preserves the local shapes such as
plazas.

Limitations. Our method is not without limita-
tions. For instance, without at least some user guid-
ance our system can only produce road configurations
present in an example or resulting from our interpo-
lation method. Further, our interpolation only works
for procedural-based growth and not example-based
growth. In addition, our naive queue-based growth
process might not find the optimal growth sequence
in the sense of most accurately and efficiently produc-
ing desired road geometry.

7. Conclusions and Future Work

We presented an interactive road designing system us-
ing the patches and statistical information extracted
from the examples to grow roads. Using a sketching in-
terface, high-level synthesis operations (i.e., warping,
blending, and interpolation), user-defined seeds, and
probability distributions our approach quickly pro-
duces realistic details comparable to those in the ex-
ample road networks. Once roads are generated, an en-
tire city model is instantiated using procedural model-
ing. Our results suggest that our example-driven road
growing framework is very flexible and delivers a fast
tool for road network design and exploration.

There are many possible extensions to our work.
First, we would like to add a road-geometry search in-
terface so that a user can sketch a desired road network
shape and the system finds it amongst a large database
of examples. To define the similarity between the user

Computer Graphics Forum (© 2015 The Eurographics Association and John

Wiley & Sons Ltd.

G. Nishida, I. Garcia-Dorado, and D. Aliaga / Example-Driven Procedural Urban Roads

Park

Flat

Coast

(c)

(f)

Figure 13: Content creation: this figure demonstrates a session in which the user designs an entire city. a) The
user draws a sketch of a city defining different land-use areas. b) Then, the system automatically generates a
terrain from the sketch. The undulations of the mountains are randomly generated by the system. The system
finds similar examples for each area from a database of examples using the average elevation in the area, and c)
the road networks are generated. d) The user updates a part of the terrain — mountains are added in the top right
corner, and e) the segmentation is automatically updated. f) The examples are re-selected based on the updated
segmentation and the average elevation of each area, and the roads are re-generated based on the examples.

sketch and the roads in the database, the underly-
ing terrain will be useful to consider. Second, even
though our local constraints consider the rivers and
the slope of the mountains, there are still some poorly
connected roads across rivers with sharp turning direc-
tions. This issue can be improved by thoroughly and
globally taking into account the underlying terrain
during growth (e.g., [GPMG10, GPGB11, EBP*12]).
Also, as a post-process, some global optimization can
be applied to make the generated road networks more
plausible based on some user-defined criteria. Third,
an extension is to incorporate more high-level edit-

ing operations such as merging by using graph cut
[LSWW11].

8. Acknowledgements

We would like to thank the reviewers for their helpful
feedback. This research was partially funded by NSF
1250232, NSF 0964302, and NSF 1302172.

References

[ABS02] ANOSHKINA E., BELYAEV A. G., SEIDEL H.-P.:
Asymptotic analysis of three-point approximizations of

© 2015 The Author(s)

Computer Graphics Forum © 2015 The Eurographics Association and

John Wiley & Sons Ltd.

G. Nishida, I. Garcia-Dorado, and D. Aliaga / Example-Driven Procedural Urban Roads

vertex normal and curvatures. In Vision, Modeling, and
Visualization (2002), pp. 211-216. 5

[ABVAO8] Ariaca D. G., BENES B., VANEGAs C. A,
ANDRYSCO N.: Interactive reconfiguration of urban lay-
outs. IEEE Computer Graphics and Applications 28, 3
(2008). 4

[AVB08] AvriacA D. G., VaNecas C. A., BENES B.: In-
teractive example-based urban layout synthesis. ACM
TOG 27,5 (2008). 3

[BWS10] BOKELOH M., WAND M., SEIDEL H.-P.: A con-
nection between partial symmetry and inverse procedu-
ral modeling. ACM TOG 29, 4 (2010). 2

[BWSK12] BoOkKELOH M., WaND M., SEIDEL H.-P.,
KoLTuN V.: An algebraic model for parameterized shape
editing. ACM TOG 31, 4 (2012). 3

[CEW*08] CHEN G., EscH G., WoNKA P., MULLER P.,
ZHANG E.: Interactive procedural street modeling. ACM
TOG 27, 3 (2008). 3

[Cit] CITYENGINE: http://www.esri.com/software/cityengine.

[EBP*12] EMILIEN A., BERNHARDT A., PEYTAVIE A.,
CANI M.-P., GALIN E.: Procedural generation of villages
on arbitrary terrains. Visual Computer 28, 6-8 (2012),
809-818. 12

[EL99] Erros A. A., LEUNG T. K.: Texture synthesis by
nonparametric sampling. In IEEE ICCV (1999), vol. 2,
pp. 1033-1038. 2

[FKS*04] FuUNKHOUSER T., KAZHDAN M., SHILANE P.,
MiN P., KIEFER W., TAL A., RUSINKIEWICZ S., DOBKIN
D.: Modeling by example. ACM TOG 23, 3 (2004). 4

[GDAU14] Garcia-Dorabo 1., Araca D. G,
UKKUSURI S. V.: Designing large-scale interactive
traffic animations for urban modeling. Computer
Graphics Forum 38, 2 (2014), 411-420. 2

[GPGB11] GaALIN E., PEYTAVIE A., GUERIN E., BENES
B.: Authoring hierarchical road networks. Computer
Graphics Forum 30, 7 (2011), 2021-2030. 12

[GPMG10] GaALIN E., PEYTAVIE A., MARECHAL N.,
GUERIN E.: Procedural generation of roads. Computer
Graphics Forum 29, 2 (2010), 429-438. 12

[KST93] KOBLER J., SCHONING U., TORAN J.: The
Graph Isomorphism Problem. Birkhduser Computer Sci-
ence, 1993. 9

[LSWW11] Lipp M., SCHERZER D., WONKA P., WIMMER
M.: Interactive modeling of city layouts using layers of
procedural content. Computer Graphics Forum 30, 2
(2011), 345-354. 10, 12

[LYFD12] Lu J., Yu F., FINKELSTEIN A., DIVERDI S.:
Helpinghand: Example-based stroke stylization. ACM
TOG 31, 4 (2012). 2, 4

[MMO8] MERRELL P., MaNOCHA D.: Continuous model
synthesis. ACM TOG 27, 5 (2008). 2, 4

[IMWA*13] MusiaLskl P., WoNka P., Ariaca D. G,
WiMMER M., GooL L. V., PURGATHOFER W.: A sur-
vey of urban reconstruction. Computer Graphics Forum
32, 6 (2013), 146-177. 3

[OSM] OSM: http://www.openstreetmap.org. 2

[Pac04] PacH J.: Towards a theory of geometric graphs.
Contemporary Mathematics 342 (2004). 2

© 2015 The Author(s)

Computer Graphics Forum (© 2015 The Eurographics Association and John

Wiley & Sons Ltd.

[PM01] Parisu Y. I. H., MULLER P.: Procedural model-
ing of cities. In ACM SIGGRAPH (2001), pp. 301-308.
2,7

[STBB14] SMELIK R. M., TuTeENEL T., BIDARRA R.,
BENES B.: A survey on procedural modeling for virtual
worlds. Computer Graphics Forum 33, 6 (2014), 31-50.
3

[TLL*10] TarroN J. O., Lou Y., LESSER S., DUKE J.,
MEcH R., KOLTUN V.: Metropolis procedural modeling.
ACM TOG 30, 2 (2010). 2, 3

[TYK*12] TarroN J. O., YaNG L., KuMAR R., LiMm M.,
GoOODMAN N. D., MEcH R.: Learning design patterns
with bayesian grammar induction. In Proceedings of the
25th UIST (2012), pp. 63-74. 2, 3

[VABWO09] Vanecas C. A., Ariaca D. G., BENES B,
WADDELL P. A.: Interactive design of urban spaces using
geometrical and behavioral modeling. ACM TOG 28, 5
(2009). 3

VAW*10] VaNEcas C. A., ArLiaca D. G., WoNkA P,
MULLER P., WADDELL P., WATsON B.: Modeling the
appearance and behavior of urban spaces. Computer
Graphics Forum 29, 1 (2010), 25-42. 3

[vBM*10] St1’avA O., BENES B., MEcH R., ALIAGA
D. G., KrISTOF P.: Inverse procedural modeling by
automatic generation of l-systems. Computer Graphics
Forum 29, 2 (2010), 665-674. 2

[VGDA*12] Vanecas C. A., Garcia-Dorabo I,
AvriacA D. G., BENES B., WADDELL P.: Inverse design
of urban procedural models. ACM TOG 81, 6 (2012).
2,3

[Wad02] WADDELL P.: Urbansim: Modeling urban devel-
opment for land use, transportation and envionrmental
planning. Journal of the American Planning Associa-
tion 68, 3 (2002), 297-314. 2

[WLKT09] WEI L., LEFEBVRE S., KWATRA V., TURK G.:
State of the art in example-based texture synthesis. In
Eurographics 2009, State of the Art Report, EG-STAR
(2009). 4

[WSL13] WiLkIE D., SEwALL J., LIN M.: Flow recon-
struction for data-driven traffic animation. ACM TOG
52, 4 (2013). 2

[YBY*13] YEH Y., BREEDEN K., YANG L., MATTHEW F.,
HANRAHAN P.: Synthesis of tiled patterns using factor
graphs. ACM TOG 32,1 (2013). 4

[YWVW13] YaNnc Y., WaNG J., Vouca E., WONKA P.:
Urban pattern: layout design by hierarchical domain
splitting. ACM TOG 32, 6 (2013). 3

G. Nishida, I. Garcia-Dorado, and D. Aliaga / Example-Driven Procedural Urban Roads

¥
rqtatlon + growmg blending
j - ,_——-‘I-"\,‘ = ’ﬁ--‘ /
L g g * :
e b
= 1=
i 11
> § 11 P et
: : 1 P
\ ,/ i = ~e7
\.JI Y '\\%‘ £

-
-~y
e

Figure 14: Redevelopment of a city: our method allows untrained users to quickly design roads with complex
styles. The user can start designing roads from scratch, or can start with any existing roads in OpenStreetMap file
format. a) The user starts with an urban area and b) replaces the target area with a regular grid pattern of roads
having a slight rotation. c) The user places a residential area road network in the top half based on two blended
examples. d) In the bottom half, an interpolated pattern of the regular grid and of a curved grid is added. e) The
user places plaza-shaped roads at the central business district by warping some example roads. f) Finally, the user
creates a park and adds some hand-drawn roads. g) In a similar manner, the user can expand the result from step
(f) to create a large area of roads that fills 14km x 14km. Note that the blue dashed box highlights the area in step
(f). h) After road generation, an entire city model is procedurally created using this road network.

© 2015 The Author(s)
Computer Graphics Forum © 2015 The Eurographics Association and
John Wiley & Sons Ltd.

